当前位置:首页>> 教学改革>> 学科资源>> 数学>> 高二>> 实践反思

实践反思

线性规划

录入者:netlab  人气指数: 次  发布时间:2010年02月02日

一、教学内容分析  

普通高中课程标准教科书数学5(必修)第三章第3课时  

这是一堂关于简单的线性规划的“问题教学”.  

线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.  

简单的线性规划(涉及两个变量)关心的是两类问题一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想  

教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等的概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.  

   

二、学生学习情况分析  

本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.  

三、设计思想  

本课以问题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,以几何画板作为平台,激发他们动手操作、观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,“从具体到一般”的抽象思维过程,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。  

四、教学目标  

1了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.  

2在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神;  

3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用.  

五、教学重点和难点  

求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?以及如何想到要这样转化?存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.   

   

六、教学过程设计  

(一)引入  

1)情景  

某工厂用AB两种配件生产甲、乙两种产品,每生产一件甲产品使用4A配件耗时1h,每生产一件乙产品使用4B配件耗时2h.该产每天最多可从配件厂获得16A配件和12B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?  

请学生读题,引导阅读理解后,列表 建立数学关系式 画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.  

问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表 →建立数学关系式→ 画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导  

教师打开几何画板,作出平面区域.  

2)问题  

师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?  

学生不难列出函数关系式                                       .  

师:这是关于变量     的一次解析式,从函数的观点看     的变化引起z的变化,而     是区域内的动点的坐标,对于每一组     的值都有唯一的z值与之对应,请算出几个z的值. 填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现?  

学生会选择比较好算的点,比如整点、边界点等.  

        

      

    学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔  

(二)实验  

   

教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.  

   

   

  

利润最大的实验探究报告单  

实验目的  

(1)                 的最大值,使     满足约束条件       

(2)           理解用图解法求线性规划问题的最优解,体会数形结合的思想.   

进行实验与收集数据  

(1)打开几何画板依次画出点、线构造平面区域;  

(2)在区域内任取一点M,度量横坐标及纵坐标,计算     =     的值,并制表显示在屏幕上;  

(3)拖动点M在区域内运动,观察度量值     的变化,猜想     取得最大值时点M的位置.同时请学生将有代表性的位置的数据记录在下表中的第2—5列:  

   

计数点n  

      

      

      

点的坐标  

直线的方程  

直线在y轴上的截距  

1  

   

   

   

   

   

   

2  

   

   

   

   

   

   

3  

   

   

   

   

   

   

4  

   

   

   

   

   

   

5  

   

   

   

   

   

   

6  

   

   

   

   

   

   

7  

   

   

   

   

   

   

   

   

   

   

   

   

   

   

猜想与假设_______________________________________________________  

    教师引导学生提出猜想:点M的坐标为(4,2)时,     =     取得最大值14.  

在信息技术与课程整合过程中,为改变老师单机的演示学生被动观看的现状,让学生参与进来,老师(可以根据学生要求)操作,学生记录,共同提出猜想,在当前技术条件受限时不失为一个好方法  

师:这有限次的实验得来的结论可靠吗?我们毕竟无法取遍所有点,因为区域内的点是无数的!况且没有计算机怎么办,数据复杂手工无法计算怎么办?因此,有必要寻找操作性强的可靠的求最优解的方法.  

形成认知冲突,激发求知欲望,调整探究思路,寻找解决问题的新方法  

继续观察实验报告单,聚焦每一行的点坐标和对应的度量值,比如M3.2, 1.2)时方程是     ,填写表中的第67列,引导学生先在点与直线之间建立起联系 ------M的坐标是方程     的解,那么点M就应该在直线     上,反过来直线     经过点M,当然也就经过平面区域,所以点M的运动就可转化为直线的平移运动。  

  

      

    教师拖动直线并跟踪,学生看到直线平移时可以取遍区域内的所有点!这样我们的猜想就非常合乎情理了.然后顺利过渡到直线与平面区域之间的关系.  

师:由于我们可以将xy所满足的条件用平面区域表示了,你能否也给利润z=2x+3y作出几何解释呢?

学生很自然地联想到上面实验的结果,将等式z=2x+3y视为关于xy的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线.  

请把你猜想1换一种说法:  

猜想与假设2_______________________________________________________  

直线     =     经过点(4,2)时,     =     取得最大值14.  

将直线     =     改写为     ,这时你能把猜想2再换一种说法吗?  

此时水到渠成.  

猜想与假设3_______________________________________________________  

   

直线     经过点时,在y轴上的截距最大,此时     =     取得最大值14.  

最后探究出“     =     最值问题可转化为经过可行域的直线     y轴上的截距的最值问题”来解决,实现其图解的目的.  

借助计算机技术用运动变化的方法,创设实验环境,形成多元联系,展示数学关系式、平面区域、表格等各种形态的表现形式,在数、图、表的关联中进行观察、分析,从而逐步帮助学生进行有层次的猜想,也为我们的研究提供一种方向,这是新课程积极倡导的合情推理  

     教师介绍线性规划、线性约束条件、线性目标函数、可行解、可行域和最优解等概念.  

()探究  

师:在上述问题中,若生产一件甲产品获利3万元,生产一件乙产品获利2万元,又应当如何安排生产才能获得最大的利润?再换几组数据试试(课本第100页)  

 让学生“主动”更换数据,教师借助几何画板“被动”地进行操作演示,师生继续实验 ,发现结论同样成立. 进一步发现目标函数直线的纵截距与z的最值之间的关系,有时并不是截距越大,z值越大.  

实验结论_______________________________________________________  

“目标函数的最值问题可转化直线z =2x+3y与平面区域有公共点时,在区域内找一个点M,使直线经过点M时在y轴上的截距最大  

从笔算到计算,从点到直线再到平面(区域),从一个函数到多个函数,从特殊到一般,从具体到抽象的认识过程,使学生经历数学知识形成、发现、发展的过程,获得问题的解决,这有助于培养学生的科学素养  

   

(四)练习小结  

学生练习P1041.  

[及时检验学生利用图解法解线性规划问题的情况练习目的:会用数形结合思想,将求     的最大值转化为直线     与平面区域有公共点时,在区域内找一个点,使直线经过点时在y轴上的截距最小的问题,为节省时间,教师可预先画好平面区域,让学生把精力集中到求最优解的解决方案上]  

(五)实例展示  

(课本第100页例5饮食营养搭配  

营养学家指出,成人良好的日常饮食至少应该提供 0.075kg 的碳水化合物,  0.06kg 的蛋白质, 0.06kg 的脂肪 .1kg 食物A含有 0.105kg 的碳水化合物, 0.07kg 的蛋白质, 0.14kg 的脂肪,花费28元;而 1kg 食物B含有 0.105kg 的碳水化合物, 0.14kg 的蛋白质, 0.07kg 的脂肪,花费21.为了满足营养学家的指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?  

   

一是使学生认识到现实生活中存在许多简单的二元线性规划问题,二是让学生经历完整的分析研究问题、制定解决问题的策略的过程,让学生全面参与课堂教学,完善知识结构体系  

   

这里要关注平面区域本题是开放型的,而引例是封闭型的.  

(六)课后伸申  

师:在上述线性规划问题中,线性约束条件及线性目标函数是确定的,求最优解.这是问题的一方面,另一方面

(1)若要求结果为整数呢?最优解是在哪?

(2)若已知有唯一(或无数)最优解时,反过来确定线性约束条件或目标函数某些字母系数的取值(范围),又如何解决呢?  

(七)小结  

求最优解的一般步骤(板书):  

(1)画线性约束条件所确定的平面区域;  

(2)取目标函数z=0,过原点作相应的直线;  

(3)平移该直线,观察确定区域内最优解的位置;  

(4)解有关方程组求出最优解,代入目标函数得最值.  

作业:第104页练习2,第106页习题34,第107页习题3.  

七、教学反思  

为了将学生从繁琐的数字计算和画区域图中解脱出来,将精力放在对最优解的理解和突出思想方法上,可根据下列不同的情况,设计教学条件,支持教学.  

(1)理想的实验应该是在网络环境的支持下完成的,教学之前,老师将积件传输到学生的计算机中,学生在单机的条件下自己动手操作.  

(2)在学生缺乏信息技术工具的条件下,教学和作业都应避免繁琐的计算,而把注意力放在“算理”上.  

另外数学探究的时间长会使学生失去耐心,基本训练时间无法保证,导致当前效果不直接,  

教学评价难以跟进,教师宜把握尺度、控制时间,组织起有效的课堂教学,提高驾驭课堂的能力与水平.