当前位置:首页>> 教学改革>> 学科资源>> 美术>> 备课资料

备课资料

庞加莱模型

录入者:netlab  人气指数: 次  发布时间:2008年03月17日

庞加莱模型

    一位数学史家曾经如此形容1854年出生的亨利?庞加莱(henri poincare:“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。庞加莱猜想,就是其中的一个。
    1904
年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。但1905年发现提法中有错误,并对之进行了修改,被推广为:任何与n维球面同伦的n维封闭流形必定同胚于n维球面。后来,这个猜想被推广至三维以上空间,被称为高维庞加莱猜想
   
如果你认为这个说法太抽象的话,我们不妨做这样一个想象:
   
我们想象这样一个房子,这个空间是一个球。或者,想象一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。
   
我们不妨假设这个球形的房子墙壁是用钢做的,非常结实,没有窗户没有门,我们现在在这样的球形房子里。现在拿一个气球来,带到这个球形的房子里。随便什么气球都可以(其实对这个气球是有要求的)。这个气球并不是瘪的,而是已经吹成某一个形状,什么形状都可以(对形状也有一定要求)。但是这个气球,我们还可以继续吹大它,而且假设气球的皮特别结实,肯定不会被吹破。还要假设,这个气球的皮是无限薄的。
   
好,现在我们继续吹大这个汽球,一直吹。吹到最后会怎么样呢?庞加莱先生猜想,吹到最后,一定是汽球表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙。
   
我们还可以换一种方法想想:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;
   
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
   
为什么?因为,苹果表面是单连通的,而轮胎面不是。
   
看起来这是不是很容易想清楚?但数学可不是随便想想就能证明一个猜想的,这需要严密的数学推理和逻辑推理。一个多世纪以来,无数的科学家为了证明它,绞尽脑汁甚至倾其一生还是无果而终。
艰难的证明之路:
    2000524,美国克莱数学研究所的科学顾问委员会把庞加莱猜想列为七个
千禧难题(又称世界七大数学难题)之一,这七道问题被研究所认为是重要的经典问题,经许多年仍未解决。克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个千年大奖问题的解决都可获得百万美元的奖励。另外六个千年大奖问题分别是: np完全问题, 霍奇猜想(hodge), 黎曼假设(rieman),杨-米尔斯理论(yang-mills), 纳维-斯托克斯方程(navier-stokes,简称ns方程),bsd猜想(birch and swinnerton-dyer)。
   
提出这个猜想后,庞加莱一度认为自己已经证明了它。但没过多久,证明中的错误就被暴露了出来。于是,拓扑学家们开始了证明它的努力。
一、早期的证明:
    20
世纪30年代以前,庞加莱猜想的研究只有零星几项。但突然,英国数学家怀特黑德(whitehead)对这个问题产生了浓厚兴趣。他一度声称自己完成了证明,但不久就撤回了论文,失之桑榆、收之东隅。但是在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。
    30
年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(r.bing)、哈肯(haken)、莫伊泽(moise)和帕帕奇拉克普罗斯(papa-kyriakopoulos)均在其中。
   
帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。因为他的名字超长超难念,大家都称呼他帕帕papa)。在1948年以前,帕帕一直与数学圈保持一定的距离,直到被普林斯顿大学邀请做客。帕帕以证明了著名的迪恩引理dehn's lemma)而闻名于世,喜好舞文弄墨的数学家约翰?米尔诺(john milnor)曾经为此写下一段打油诗:无情无义的迪恩引理/每一个拓扑学家的天敌/直到帕帕奇拉克普罗斯/居然证明得毫不费力。
   
然而,这位聪明的希腊拓扑学家,却最终倒在了庞加莱猜想的证明上。在普林斯顿大学流传着一个故事。直到1976年去世前,帕帕仍在试图证明庞加莱猜想,临终之时,他把一叠厚厚的手稿交给了一位数学家朋友,然而,只是翻了几页,那位数学家就发现了错误,但为了让帕帕安静地离去,最后选择了隐忍不言。
二、柳暗花明的突破:
   
这一时期拓扑学家对庞加莱猜想的研究,虽然没能产生他们所期待的结果,但是,却因此发展出了低维拓扑学这门学科。
   
一次又一次尝试的失败,使得庞加莱猜想成为出了名难证的数学问题之一。然而,因为它是几何拓扑研究的基础,数学家们又不能将其撂在一旁。这时,事情出现了转机。
    1966
年菲尔茨奖得主斯梅尔(smale),在60年代初想到了一个天才的主意:如果三维的庞加莱猜想难以解决,高维的会不会容易些呢?1960年到1961年,在里约热内卢的海滨,经常可以看到一个人,手持草稿纸和铅笔,对着大海思考。他,就是斯梅尔。1961年的夏天,在基辅的非线性振动会议上,斯梅尔公布了自己对庞加莱猜想的五维空间和五维以上的证明,立时引起轰动。
    10
多年之后的1983年,美国数学家福里德曼(freed man)将证明又向前推动了一步。在唐纳森工作的基础上,他证出了四维空间中的庞加莱猜想,并因此获得菲尔茨奖。但是,再向前推进的工作,又停滞了。
   
拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。瑟斯顿(thruston)就是其中之一。他引入了几何结构的方法对三维流形进行切割,并因此获得了1983年的菲尔茨奖。
   
就像费马大定理,当谷山志村猜想被证明后,尽管人们还看不到具体的前景,但所有的人心中都有数了。因为,一个可以解决问题的工具出现了。清华大学数学系主任文志英说。
三、最后的决战:
   
然而,庞加莱猜想,依然没有得到证明。人们在期待一个新的工具的出现。可是,解决庞加莱猜想的工具在哪里?
工具有了。
   
理查德.汉密尔顿,生于1943年,比丘成桐大6岁。虽然在开玩笑的时候,丘成桐会戏谑地称这位有30多年交情、喜欢冲浪、旅游和交女朋友的老友“playboy”,但提起他的数学成就,却只有称赞和惺惺相惜。
    1972
年,丘成桐和李伟光合作,发展出了一套用非线性微分方程的方法研究几何结构的理论。丘成桐用这种方法证明了卡拉比猜想,并因此获得菲尔茨奖。1979年,在康奈尔大学的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。那时候,汉密尔顿刚刚在做ricci流,别人都不晓得,跟我说起。我觉得这个东西不太容易做。没想到,1980年,他就做出了第一个重要的结果。丘成桐说,于是我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。
    ricci
流是以意大利数学家里奇(gregorio ricci)命名的一个方程。用它可以完成一系列的拓扑手术,构造几何结构,把不规则的流形变成规则的流形,从而解决三维的庞加莱猜想。看到这个方程的重要性后,丘成桐立即让跟随自己的几个学生跟着汉密尔顿研究ricci流。其中就包括他的第一个来自中国大陆的学生曹怀东。
   
第一次见到曹怀东,是在超弦大会丘成桐关于庞加莱猜想的报告上。虽然那一段时间里,几乎所有的媒体都在找曹怀东,但穿着件颜色鲜艳的大t恤的他,在会场里走了好几圈,居然没有人认出。这也难怪。绝大多数的数学家,依然是远离公众视线的象牙塔中人,即使是名动天下如威滕(witten),坐在后排,俨然也是大隐隐于市的模样。
    1982
年,曹怀东考取丘成桐的博士。1984年,当丘成桐转到加州大学圣迭戈分校任教时,曹怀东也跟了过来。但是,他的绝大多数时间,是与此时亦从康奈尔大学转至圣迭戈分校的汉密尔顿泡在一起。这时,丘成桐的4名博士生,全部在跟随汉密尔顿的研究方向。其中做得最优秀的,是施皖雄。他写出了很多非常漂亮的论文,提出很多好的观点,可是,因为个性和环境的原因,在没有拿到大学的终身教职后,施皖雄竟然放弃了做数学。提起施皖雄,时至今日,丘成桐依然其辞若有憾焉。一种虽然于事无补但惹人深思的假设是,如果,当时的施皖雄坚持下去,关于庞加莱猜想的故事,是否会被改写?
   
在使用ricci流进行空间变换时,到后来,总会出现无法控制走向的点。这些点,叫做奇点。如何掌握它们的动向,是证明三维庞加莱猜想的关键。在借鉴了丘成桐和李伟光在非线性微分方程上的工作后,1993年,汉密尔顿发表了一篇关于理解奇点的重要论文。便在此时,丘成桐隐隐感觉到,解决庞加莱猜想的那一刻,就要到来了。
   
与其同时,地球的另一端,一个叫格里戈里·佩雷尔曼的数学家在花了8年时间研究这个足有一个世纪的古老数学难题后,将3份关键论文的手稿在200211月和20037月之间,粘贴到一家专门刊登数学和物理论文的网站上,并用电邮通知了几位数学家。声称证明了几何化猜想。到200510月,数位专家宣布验证了该证明,一致的赞成意见几乎已经达成。
   
如果有人对我解决这个问题的方法感兴趣,都在那儿呢让他们去看吧。佩雷尔曼博士说,我已经发表了我所有的算法,我能提供给公众的就是这些了。
   
佩雷尔曼的做法让克雷数学研究所大伤脑筋。因为按照这个研究所的规矩,宣称破解了猜想的人需在正规杂志上发表并得到专家的认可后,才能获得100万美元的奖金。显然,佩雷尔曼并不想把这100万美金补充到他那微薄的收入中去。
   
对于佩雷尔曼,人们知之甚少。这位伟大的数学天才,出生于1966613,他的天分使他很早就开始专攻高等数学和物理。16岁时,他以优异的成绩在1982年举行的国际数学奥林匹克竞赛中摘得金牌。此外,他还是一名天才的小提琴家,桌球打得也不错。
   
从圣彼得堡大学获得博士学位后,佩雷尔曼一直在俄罗斯科学院圣彼得堡斯捷克洛夫数学研究所工作。上个世纪80年代末期,他曾到美国多所大学做博士后研究。大约10年前,他回到斯捷克洛夫数学研究所,继续他的宇宙形状证明工作。
   
证明庞加莱猜想关键作用让佩雷尔曼很快曝光于公众视野,但他似乎并不喜欢与媒体打交道。据说,有记者想给他拍照,被他大声制止;而对像《自然》《科学》这样声名显赫杂志的采访,他也不屑一顾。
   
我认为我所说的任何事情都不可能引起公众的一丝一毫的兴趣。佩雷尔曼说,我不愿意说是因为我很看重自己的隐私,或者说我就是想隐瞒我做的任何事情。这里没有顶级机密,我只不过认为公众对我没有兴趣。他坚持自己不值得如此的关注,并表示对飞来的横财没有丝毫的兴趣。
    2003
年,在发表了他的研究成果后不久,这位颇有隐者风范的大胡子学者就从人们的视野中消失了。据说他和母亲、妹妹一起住在圣彼得堡市郊的一所小房子里,而且这个犹太人家庭很少对外开放。
四、最终的解决:
   
就这样,在前人的不断努力下,庞加莱猜想的证明也变得水到渠成。
    200663,中山大学的朱熹平教授和曹怀东以一篇长达300
多页的论文,以专刊的方式刊载在美国出版的《亚洲数学期刊》六月号,补全了佩雷尔曼证明中的漏洞,给出了庞加莱猜想的完全证明。破解了国际数学界关注上百年的重大难题——庞加莱猜想。运用汉密尔顿、佩雷尔曼等的理论基础,朱熹平和曹怀东第一次成功处理了猜想中奇异点的难题,从而完全破解了困扰世界数学家多年的庞加莱猜想。今后,庞加莱猜想就要被称作庞加莱定理啦!
   
但是,因为还有其他人宣称证明了该猜想,包括佩雷尔曼、汉密尔顿都对此问题有着巨大贡献,佩雷尔曼还一度声称自己证明了该猜想,而朱熹平和曹怀东却完成了最后的封顶,因此谁是首个证明者,还有争议。
庞加莱猜想的意义:
   
庞加莱猜想的证明意义重大,该猜想的证明,凝结了中国五六个科学家的贡献,是人类在三维空间研究角度解决的第一个难题,也是一个属于代数拓扑学中带有基本意义的命题,将有助于人类更好地研究三维空间,其带来的结果将会加深人们对流形性质的认识,对物理学和工程学都将产生深远的影响,甚至会对人们用数学语言描述宇宙空间产生影响。