集合间的基本关系
录入者:netlab 人气指数: 次 发布时间:2010年01月28日
一、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N;(2) Q;(3)-1.5 R
2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
二、新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:
|
当集合A不包含于集合B时,记作A B
用Venn图表示两个集合间的“包含”关系
B |
A |
(二) 集合与集合之间的 “相等”关系;
,则 中的元素是一样的,因此
即
练习
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合 ,存在元素 ,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:
1 2 ,且 ,则
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x 5},并表示A、B的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(九) 作业布置
1、书面作业:习题1.1 第5题
2、提高作业:
1 已知集合 , ≥ ,且满足 ,求实数 的取值范围。
2 设集合 ,
,试用Venn图表示它们之间的关系。
板书设计(略)